
CD158k Is a Reliable Marker for Diagnosis of Sézary
Syndrome and Reveals an Unprecedented
Heterogeneity of Circulating Malignant Cells
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The diverse aspects of cutaneous T-cell lymphomas may impede the diagnosis of Sézary syndrome (SS) and
mycosis fungoides (MF), in particular, at early stages of the disease. We defined the CD158k/KIR3DL2 molecule as a
first positive cell surface marker for Sézary cells (SCs). Here, we designed an optimized flow cytometry gating
strategy, allowing the definition of lymphocytes of different sizes and defects of cell surface markers. Quantifica-
tion by cytomorphology, flow cytometry, or clonal evaluation, gave similar results at initial time points and during
the evolution in a prospective study involving 64 consecutive cutaneous T-cell lymphoma or erythrodermic
patients. We found that CD158kþ T cells and circulating CD4þ T cells from MF patients exhibited unexpected
patterns of cell surface expression with a marked heterogeneity of circulating lymphocytes even at initial diagnosis.
Taken together, our results show that a multistep gating of CD158kþ cells is reliable to assess tumor burden in
case of SS and suggest that both circulating MF CD4þ T cells and CD158kþ T cells are not homogeneous distinct
memory populations. Further phenotypic and functional characterizations of such subsets are needed to better
understand the underlying molecular mechanisms leading to the development of these diseases.
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INTRODUCTION
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous
group of lymphomas primarily involving the skin (Willemze
et al., 2005). They encompass diverse presentations such as
mycosis fungoides (MF), in which malignant cells reside
primarily in infiltrated skin lesions. Sézary syndrome (SS) is a
disease corresponding to an aggressive and leukemic form of
CTCL characterized by erythroderma, lymphadenopathy, and

high numbers of atypical lymphocytes with cerebriform-like
nuclear contours (Sézary cells, SCs) in peripheral blood and
skin. Erythrodermic MF (EMF) is distinguished from SS by
absent or minimal blood involvement. In the clinical setting of
erythoderma, the distinction between SS, MF, EMF, and
benign erythrodermic inflammatory diseases is difficult to
determine as clinical and histopathological aspects may not
be specific, in particular at early stages of the disease.

The criteria recommended by the International Society for
Cutaneous Lymphomas to distinguish SS from non-leukemic
expressions of erythrodermic CTCL and erythrodermic inflam-
matory diseases consist of high blood burden with blood
smears Sézary cell (bsSC) count X1,000 cellsml� 1 and a
positive T-cell clone. One of the following can be substituted
for bsSCs: a CD4/CD8 ratio X10, CD4þCD7� cells X40%,
or CD4þCD26� cells X30% (Olsen et al., 2011b). Because
the detection of SCs is not specific enough to allow an
unequivocal detection of tumoral cells and given that the
significance of clonal T-cell expansion in terms of malignancy
is not clear (Ortonne et al., 2006), the identification of a
specific marker of malignant SCs has been a challenging issue
for many years (Delfau-Larue et al., 2000; Vonderheid, 2006).
The use of flow cytometry is mainly based on the loss or the
lack of T-cell markers such as CD2, CD3, CD5, CD7, and
CD26, which is not constant and may be observed in some
benign dermatoses (Harmon et al., 1996; Edelman and
Meyerson, 2000; Bernengo et al., 2001; Bahler et al., 2008).
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Another approach to identify clonal neoplastic T cells in
SS is the use of anti-TCR-Vb chain antibodies (Schwab et al.,
2002; Morice et al., 2006), which is able to detect only about
70% of the occurring TCR-Vb chain antigens (Schwab et al.,
2002).

By using the AZ158 mAb and PCR analysis with the specific
probes followed by subsequent sequencing, we identified
CD158k/KIR3DL2, a member of the killer cell Ig-like receptor
family, as a specific marker for the evaluation of circulating
malignant T cells by flow cytometry (Bagot et al., 2001;
Poszepczynska-Guigne et al., 2004; Bagot and Bensussan,
2006). In healthy donors (HD), CD158k expression is highly
restricted and is detected only on a minor NK-cell subset and
on rare CD3þCD8þ T cells (Moretta et al., 1997). In SS
patients, the percentage and absolute numbers of CD158kþ
cells are strongly correlated to the percentage and absolute
numbers of atypical circulating bsSCs (Poszepczynska-Guigne
et al., 2004; Klemke et al., 2008; Bouaziz et al., 2010) and
CD4þCD158kþ lymphocytes correspond to the malignant
clonal cell population (Poszepczynska-Guigne et al., 2004).
Ortonne et al. (2008) demonstrated that the overexpression of
CD158k transcripts in lesional skin from erythrodermic
patients may be used as a reliable early marker for SS . In
addition, immunohistological staining with CD158k allows
the distinction between biopsies from MF and SS (Wechsler
et al., 2003).

Several reports demonstrate that lymphocytes from MF and
SS patients exhibit distinct molecular patterns of cell surface
expression. On antigenic stimulation, naı̈ve T cells enter a
multistep process of expansion and differentiation into mem-
ory cells with distinct homing characteristics and effector
functions (Sallusto et al., 1999). Additional memory subset
characterization using a combination of cell surface markers
such as CD45RA, CCR7, and CD27, was reported with the
definition of central memory (TCM), transitional memory
(TTM), effector memory (TEM), and terminally effector
memory (TEMRA) lymphocytes, leading to a more accurate
definition of memory cells (Sallusto et al., 2004; Fritsch et al.,
2005; Riou et al., 2007).

It has been shown that malignant SCs usually have a central
memory phenotype, whereas T cells from MF skin lesions are
polarized TEM (Campbell et al., 2010; Clark et al., 2011).
Skin-homing receptors such as cutaneous lymphocyte antigen
(CLA) and CCR4 seem to be increased in SS patients, defining
a general phenotype of skin-homing TCM lymphocytes
(Ferenczi et al., 2002; Sokolowska-Wojdylo et al., 2005).

Our goal was to assess the reliability of CD158k to make the
diagnosis of SS in a prospective study of 55 patients with CTCL
and nine patients with skin inflammatory disease from other
origin. CD158k expression and a combination of cell surface
markers on peripheral blood mononuclear cells (PBMCs) were
evaluated by flow cytometry. Our gating strategy allowed a
precise characterization of circulating CD158kþ T cells at
initial diagnosis, including large- and small-sized lympho-
cytes, with or without defects of CD3 and/or CD4 expression.
Quantification by using cytomorphology, flow cytometry, or
clonal evaluation by immunoscope, gave similar results at
initial time points and during the evolution. Unexpectedly, we

did not find a homogeneous distribution of TCM CD158kþ
cells at initial diagnosis and during the course of the disease
and circulating CD4þ T cells from MF patients were not
uniformly of the TEM phenotype. Expression of cutaneous
addressin molecules was also very heterogeneous within
‘‘naı̈ve’’ and memory subsets of CD158kþ T cells and
CD4þ T cells from MF patients.

RESULTS
Optimization of CD158k staining with AZ158 mAb to establish
the diagnosis of SS

At initial diagnosis, SS patients displayed at least one T-cell
clone expansion as assessed by either the size of the b-chain
CDR3 or TCR gene analysis (Table 1). Detection of SCs above
1, 000ml�1 on blood smears was found in 10 out of 12 SS
patients. MF patients’ BsSC counts (five available results at
initial diagnosis) were all below 50ml�1. At the time of
diagnosis, a CD4/CD8 ratio 410 was reported in 10 out of
12 SS, whereas none of the 13 remaining patients with MF
reached this ratio (Table 1). The median percentage of CD4þ
CD26� blood lymphocytes was higher in SS patients (67%)
than in MF (19%), EMF (21%), or HD (17%) individuals
(Table 1).

Given that SC may display different morphological features
in terms of size and that phenotypic aberrancies of clonal cells
are often described, flow cytometry evaluation of CD158kþ
T cells required multistep analyses. Distinction between large
lymphocytes and monocytes was done by the exclusion of
CD14þ cells. As CD158k may be expressed on normal
CD3þCD8þ T cells and NK cells, these subsets were
eliminated from total CD4þ /�CD158kþ cells (Figure 1a).
Using this gating strategy, we show in Figure 1b that 92% of
circulating lymphocytes express both TCRVb17 and CD158k
in patient LESC45. We then performed cell sorting on five SS
patients with various tumor burden. TCRVb repertoire from
sorted CD158kþ T cells and their negative counterpart
CD3þCD4þCD158k� cells was investigated. In all cases,
CD158kþ T cells displayed an expansion of one major Vb
family (ranging from 77 to 96% of total Vb families), whereas
almost all Vb families were present in CD3þCD4þ
CD158k� cells (three representative patients are shown in
Figure 1c). The CDR3 size was analyzed for each expanded
Vb family detected in the five patients. Data show a unique
TCRVb junctional region size in CD158kþ T cells, whereas
TCRVb was polyclonal in CD3þCD4þCD158k� cells.
Figure 1d shows the representative results obtained with
GOLM47, where only one TCRVb6 clone with a unique
CDR3 size is obtained within CD158kþ T cells. Multiple
clones with distinct TCRVb6 CDR3 sizes are found within the
negative fraction including a slight expansion of the same
TCRVb6 clone detected in CD158kþ T cells, which accounts
for less than 5% of total TCRVb families. This may represent a
very small fraction of SCs, which are not CD158k as
previously described (Ortonne et al., 2006) or reflects the
limitation of the cell sorting procedure.

At initial diagnosis, absolute count of CD158kþ T cells was
positively correlated to the absolute count of atypical circulat-
ing BsSC (R2¼ 0.906, Po0.0001) in SS patients.
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2 Journal of Investigative Dermatology (2014), Volume 00



T
ab

le
1
.

P
at

ie
n
ts

’
b
io

lo
gi

ca
l

ch
ar

ac
te

ri
st

ic
s

an
d

d
ia

gn
o
si

s
at

fi
rs

t
sa

m
p
li
n
g

P
at

ie
n
t

C
D

4
/C

D
8

ra
ti

o
b
sS

C
,
ll
�

1
C

D
1
5
8
k
þ

T
ce

ll
s,

ll
�

1
C

D
4
þ

C
D

2
6
�

,
%

C
D

4
þ

C
D

7
�

,
%

C
lo

n
al

it
y

T
C

R
G

re
ar

ra
n
ge

m
en

t
T
C

R
-V

b
%

V
b

D
ia

gn
o
st

ic
T
im

e
o
f

sa
m

p
li
n
g

B
lo

o
d

Sk
in

A
H

H
O

3
9

4
0

2
2

1
9

8
N

D
N

D
N

D
N

A
Ec

ze
m

a
In

it
ia

l
D

g

FO
N

S1
6

7
0

5
N

D
N

D
N

D
N

D
P
o
ly

cl
o
n
al

N
A

Ec
ze

m
a

In
it
ia

l
D

g

K
O

R
A

6
7

1
0

1
9

N
D

N
D

N
D

N
D

V
b1

4
6
0

Ec
ze

m
a

In
it
ia

l
D

g

M
A

R
C

4
2

4
0

8
N

D
N

D
N

D
N

D
P
o
ly

cl
o
n
al

N
A

EI
D

In
it
ia

l
D

g

P
O

R
J

2
8

4
0

1
0

N
D

N
D

N
D

N
D

P
o
ly

cl
o
n
al

N
A

EI
D

In
it
ia

l
D

g

A
T
IY

8
5

1
0

3
9

N
D

N
D

N
D

N
D

V
b6

-V
b1

3
a

1
5
–1

6
P
so

ri
as

is
In

it
ia

l
D

g

B
EL

M
4
3

6
0

2
1

3
0

2
8

N
D

N
D

N
D

N
A

P
so

ri
as

is
In

it
ia

l
D

g

B
EL

G
3
3

2
0

1
6

N
D

N
D

N
D

N
D

N
D

N
D

P
so

ri
as

is
In

it
ia

l
D

g

V
ID

G
4
6

1
0

4
6

2
0

1
4

N
D

N
D

N
D

N
A

P
so

ri
as

is
In

it
ia

l
D

g

A
R

R
L5

9
1

N
D

1
5

1
3

N
D

N
D

N
D

P
o
ly

cl
o
n
al

N
A

M
F

In
it
ia

l
D

g

B
ES

G
3
6

2
0

4
1

N
D

N
D

P
o
ly

cl
o
n
al

N
D

V
b6

2
0

M
F

In
it
ia

l
D

g

B
EY

C
3
2

2
0

8
1
9

N
D

O
li
go

cl
o
n
al

N
D

V
b2

–V
b6

3
9
–1

4
M

F
In

it
ia

l
D

g

D
A

G
J9

7
2

N
D

2
6

1
5

N
D

P
o
ly

cl
o
n
al

N
D

P
o
ly

cl
o
n
al

N
A

M
F

In
it
ia

l
D

g

EL
K

S4
8

1
0

3
1

6
4

N
D

C
lo

n
al

C
lo

n
al

V
b3

–V
b4

1
6
–1

6
M

F
In

it
ia

l
D

g

FO
U

R
4
8

1
0

2
2
6

N
D

P
o
ly

cl
o
n
al

N
D

P
o
ly

cl
o
n
al

N
A

M
F

In
it
ia

l
D

g

LE
P
L4

6
2

0
2

2
0

N
D

P
o
ly

cl
o
n
al

C
lo

n
al

P
o
ly

cl
o
n
al

N
A

M
F

In
it
ia

l
D

g

B
R

EE
4
1

2
0

5
8

8
N

D
N

D
N

D
P
o
ly

cl
o
n
al

N
A

M
F

T
T

D
ER

F3
1

1
N

D
9

N
D

N
D

C
lo

n
al

C
lo

n
al

P
o
ly

cl
o
n
al

N
A

M
F

T
T

LE
N

M
5
4

2
1
2
1

2
5
8

9
N

D
N

D
N

D
V
b4

4
1

M
F

T
T

D
A

U
P
5
7

2
0

1
4

1
2

N
D

N
D

N
D

P
o
ly

cl
o
n
al

N
A

T
M

F
T
T

P
O

LG
4
7

2
3
8

8
2
0

N
D

P
o
ly

cl
o
n
al

N
D

V
b6

2
5

T
M

F
T
T

C
H

A
M

2
8

1
0

0
N

D
N

D
N

D
N

D
O

li
go

cl
o
n
al

N
A

T
M

F
þ

B
-C

LL
T
T

A
N

N
J5

6
2

4
5
5

4
8
7

1
3

N
D

C
lo

n
al

C
lo

n
al

V
b8

4
8

EM
F

In
it
ia

l
D

g

C
H

A
G

6
2

3
0

8
1
0

N
D

N
D

P
o
ly

cl
o
n
al

N
D

P
o
ly

cl
o
n
al

N
A

EM
F

In
it
ia

l
D

g

G
A

C
S4

3
7

0
1
7

8
N

D
P
o
ly

cl
o
n
al

N
D

O
li
go

cl
o
n
al

N
A

EM
F

In
it
ia

l
D

g

G
A

IY
6
7

8
3
2
0

6
2
1

7
7

3
3

C
lo

n
al

C
lo

n
al

V
b5

a
6
0

EM
F

In
it
ia

l
D

g

LE
V

J
3
8

1
0

6
2
5

N
D

P
o
ly

cl
o
n
al

N
D

P
o
ly

cl
o
n
al

N
A

EM
F

In
it
ia

l
D

g

ST
A

A
2
2

2
0

3
1
2

N
D

N
D

N
D

P
o
ly

cl
o
n
al

N
A

EM
F

In
it
ia

l
D

g

B
R

A
M

3
9

1
5

0
N

D
2
4

N
D

P
o
ly

cl
o
n
al

N
D

P
o
ly

cl
o
n
al

N
A

EM
F

T
T

FL
ED

5
0

4
0

2
4

3
9

N
D

N
D

N
D

P
o
ly

cl
o
n
al

N
A

EM
F

T
T

G
A

U
C

5
0

3
0

4
7

N
D

C
lo

n
al

N
D

N
D

N
D

EM
F

T
T

IL
N

V
6
3

5
4
7
2

9
3
3

1
8

N
D

N
D

N
D

V
b2

6
2

EM
F

T
T

A
R

G
P
3
8

3
0

5
,4

2
8

3
,1

7
1

9
6

1
1

C
lo

n
al

N
D

N
D

N
D

SS
In

it
ia

l
D

g

C
H

A
S6

5
3
2

2
,2

6
5

2
,2

4
1

2
N

D
C

lo
n
al

C
lo

n
al

N
D

N
A

SS
In

it
ia

l
D

g

H Moins-Teisserenc et al.
Phenotypic Heterogeneity of CD158kþ Sézary Cells
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Immunoscope did not reveal any clonal Vb expansion in
Patient CHAS65 but a clonal rearrangement of the VbTCR
locus was present in the blood and the skin. Three out of six
EMF patients had relatively high CD158kþ T-cell counts
(ANNJ56¼487ml�1, CHAG62¼810ml� 1, and GAY67¼
621ml� 1). None of the remaining patients (MF or skin
inflammatory disease) had CD158kþCD4þ counts above
150ml� 1.

Twenty SS patients were evaluated for SC counts after
introduction of treatment. Among seven patients with both
BsSC and CD158kþ T cells below 1,000ml� 1, two were in
complete remission (GASM45, MANV26), one in partial
remission (TIRD53), one with a stable disease (TETC49), and

two were investigated at the beginning of clinical relapse with
less than 25% of skin invasion (CARE49, GRIM40).

CD158kþ T-cell count correlated with absolute T-cell clone
count (Supplementary Figure S1a online), (R2¼0.78). The corre-
lations between CD3þCD4þCD26� T-cell counts and bsSC,
CD158kþ T cell or absolute T-cell clone counts were slightly
weaker (R2¼ 0.56,¼ 0.46, and ¼0.66, respectively).

Numerations of malignant cells using the three methods
(blood smear, CD158k staining, and clonality) gave similar
results during the course of the disease (Supplementary
Figure S1b online). A receiver operating characteristic
analysis was done to evaluate the respective performance of
cytomorphology and flow cytometry methods for the diagnosis
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of SS. According to the established diagnosis of SS, we
determined true positive and false positive data from both
methods at various threshold settings. These two methods
gave similar results in terms of sensitivity and specificity
(Supplementary Figure S2 online) with the definition of a
threshold value of CD158kþ T cells¼1,200ml�1 allowing a
specificity of 100% and a sensitivity of 70% for the diagnosis of
SS (Supplementary Table S1 online).

Phenotypic heterogeneity of Sézary cells

Naı̈ve and memory T-cell subsets from CD158kþ T cells (SS
patients), and from total CD4þT cells (MF patients and HD)
were identified based on CD45RA and CCR7 expression.
Naı̈ve cells (TN) were characterized as CD45RAþCCR7þ ,
TCM had the CD45RA-CCR7þ phenotype, TEM were defined
by the lack of expression of these markers, and TEMRA
exhibited CD45RAþCCR7� phenotype. The use of a sub-
tractive gating strategy, excluding CD158kþ T cells from total
CD3þCD4þ T cells in SS patients allowed the characteriza-
tion of a ‘‘normal’’ TCD4þ subset (CD158k�TCD4þ ).
Importantly, although we demonstrated that CD158k�
CD3þCD4þ non-malignant lymphocytes exhibited a dis-
tinct TCR-Vb repertoire as compared with the malignant
clonal population (CD158kþ T cells) in the same SS patient,
we found that the relative distribution of naı̈ve and memory
cells in both populations was very similar (Figure 2). Naı̈ve

T cells were significantly lower in MF and SS patients
(Figure 2a) as compared with HD (median¼ 5.7, 20.3, and
42.2%, respectively). The majority of circulating MF CD4þ
T cells was of the TEM phenotype (median¼60.9%), whereas
the distribution of TEM in HD and SS was similar
(median¼24.6 and 24.4%, respectively; Figure 2b). Percen-
tages of central memory cells were higher in SS than in MF
(median¼20.7 vs. 8.1%) but did not differ from HD (24.5%).
However, the distribution of TCM in SS patients was extremely
heterogeneous (Figure 2c). We found an important increase of
the TEMRA subset in MF and SS patients (24 and 12%,
respectively), whereas it represented a very small fraction of
total CD4þ T cells in HD (median¼1.3%; Figure 2d).

We then studied the pattern expression of the skin-homing
addressins CCR4 and CLA. The median percentages of CCR4
were similar in HD TCD4þ (45%), MF TCD4þ (43%),
CD158k-TCD4þ (52%), and CD158kþ T cells (44%;
Figure 2e). We observed the same findings for CLA: HD
TCD4þ (15%), MF TCD4þ (23%), CD158k-TCD4þ (16%),
and CD158kþ T cells (22%) (Figure 2f). However, an extreme
heterogeneity of CCR4 and CLA expression was found in SS
patients, i.e., percentage ranges of CCR4þCD158kþ T cells
were 0.5–90% (HD CCR4þCD4þ T cells¼ 35–52%) and %
ranges of CLAþCD158kþ T cells were 0.3–73% (HD CLAþ
CD4þ T cells¼9–31%). We analyzed CCR4 expression on
naı̈ve (or ‘‘naı̈ve-like’’) and memory subsets from HD
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TCD4þ , MF TCD4þ , CD158k�TCD4þ , and CD158kþ
T cells (Figure 2g). The majority of MF CD4þ T cells
expressing CCR4 were TCM (HD vs. MF, Po0.001, SS vs.
MF, P¼ 0.04). Percentages of ‘‘naı̈ve-like’’ T cells expressing
CCR4þ were higher in MF and SS patients when compared
with naı̈ve HD CD4þCCR4þ T cells (P¼0.001 and
Po0.001, respectively). CLA expression was significantly
higher in overall lymphocyte subsets from MF and SS patients
than in HD (Figure 2h). CLA expression within the TEMRA and
the ‘‘naı̈ve-like’’ subsets was increased in MF CD4þ T cells
and SCs than in HD (P¼ 0.003 and Po0.001, respectively for
TEMRA and Po0.001 and Po0.001, respectively for naive).
Interestingly, the pattern of CCR4 and CLA expression
was similar between CD158k�CD4þ T cells and CD158kþ
T cells from SS patients (Figures 2g and h).

Sézary cells and circulating MF TCD4þ display distinct
combinations of CD45RA, CCR7, and CD27 cell surface
expression.

To further characterize memory CD158kþ T cells, we
defined additional subsets, comprising of TTM (Riou et al.,
2007). Commercially, anti-TCR-Vb mAbs were available for
18 patients. Clonal Vbþ malignant cells were tested in
parallel (Figure 3 and Supplementary Figure S3 online).
CD45RA� and CD45RAþ subsets were analyzed according

to the respective expression of CCR7 and CD27. Within the
CD45RA� subset, TCM were defined as CD27þCCR7þ ,
TTM as CD27þCCR7� , TEM as CD27�CCR7� , and a
minor subset was CD27�CCR7þ (CD27� TCM). Within
the CD45RAþ subset, the majority of TN was CD27þ
CCR7þ , with a small subset of CD27� TN and TEMRA
were subdivided into CD27þ and CD27� TEMRA
(Figure 3). Subset analyses using either CD158k or TCR-Vb
mAbs gave similar results (Figures 3a and b). Figures 3c–e
show representative data illustrating the heterogeneity of
CD158kþ T cells. Therefore, the combined staining with
anti-CD45RA, -CD27, and -CCR7 mAbs discriminates 1/naive
and TCM within CD27þCCR7þ cells, 2/TEM and TTM
within CD45RA-CCR7-cells, and 3/TTM and CD27þTEMRA
within CD27þCCR7� cells. We performed the same analy-
sis on CD4þ T cells from MF patients and HD (Figure 3f).
Unexpectedly, an important part of MF CD4þ T cells and
CD158kþ T cells displayed a CD27þ TEMRA phenotype
(range in MF¼ 4–63%, SS¼ 3–86%) as compared with HD
(range¼ 0–15%). MF CD4þ T cells were uniformly distrib-
uted within CD27þ TEMRA, TTM, and TEM subsets, whereas
CD158kþ T cells were heterogeneous with a predominance
of CD27þ TEMRA, CD27þ TN, TTM, and CD27þ TCM
subsets.
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www.jidonline.org 7

http://www.jidonline.org


Longitudinal evolution of CD158kþ T cells and
CD158k�CD4þ subsets

Absolute counts of circulating CD158kþ T cells, CD158k�
CD4þ T cells, and naı̈ve/memory subsets were evaluated
during the course of the disease in 12 SS patients. Figure 4
shows three representative data from patients treated with
chemotherapy, corticoids, and/or alemtuzumab. The decrease
of CD158kþ T cells was associated with a response to
chemotherapy and/or corticotherapy with stable disease
and partial response in Patients STAR23 and CHAP25,
respectively, whereas CD158k�CD4þ T cells had an
inverse profile (Figures 4a and b, four upper panels). The
distribution of naı̈ve-like and memory subset was extremely
heterogeneous between patients and during the follow-up.
BERP36, treated with alentuzumab, experienced a rapid
deletion of both CD158kþ T cells and CD158k�CD4þ
T-cell subsets associated with a 6-month partial remission
(Figure 4c).

Of note, Figure 4 shows two examples of circulating
CD158kþ T cells predominantly expressing CCR4 dur-
ing the time course of the disease, with low levels of cir-
culating CD158kþCLAþ T cells, whereas absolute count
of CD158k�CLAþCD4þ T cells paralleled those of
CD158k�CCR4þCD4þ T cells (Figure 4, the six lower
panels).

DISCUSSION
The first aim of this study was to determine a flow cytometric
gating strategy to optimize the identification of CD158kþ
T cells from total PBMCs, including lymphocyte subsets of
different sizes with or without defects of either CD3 or CD4
expression. We applied this strategy to evaluate the ability of
CD158k mAbs to make the diagnosis of SS. Our data showed
that the respective performance of cytomorphology and flow
cytometry methods was similar at initial diagnosis, with a
threshold value of CD158kþ T-cell count¼ 1,200ml�1

allowing a specificity of 100%. These data confirm and extend
previous reports from our group and others (Poszepczynska-
Guigne et al., 2004; Bahler et al., 2008; Klemke et al., 2008;
Bouaziz et al., 2010). When considering the total group of 55
CTCL patients, we found a strong correlation between
absolute T-cell clone, bsSC, and CD158kþ T-cell counts.
The usefulness of flow cytometry in tracking tumor burden and
response to therapy relies on the assumption that at least one
marker remains relatively constant over time. As SCs often
have an aberrant immunophenotype, such as a loss of T-cell
antigens, the CD158k molecule constitutes a positive marker
for disease monitoring, as evidenced by the repertoire analysis
of CD158kþ T cells as compared with CD158k�
CD3þCD4þ T cells (Figures 1c and d). We confirm the
extreme heterogeneity of circulating CD158kþ T cells
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between patients, in terms of morphology and phenotypic
aberrancies (Bouaziz et al., 2010; Clark et al., 2011; Vaughan
et al., 2012). Serial flow cytometric analyses performed in
12 patients revealed changes involving CD3, CD4, and CLA
expression on CD158kþ T cells, particularly in individuals
under chemotherapy.

We found an unexpected heterogeneity of CD45RA and
CCR7 expression on CD158kþ T cells, with elevated num-
bers of ‘‘naı̈ve-like’’ or TEMRA CD158kþ T cells in some
patients, even at initial diagnosis. Central memory CD45RA�
CCR7þ cells were well represented within CD158kþ
T cells, but at the same level as for CD4þ T cells from HD.
The majority of blood-derived CD4þ T cells from MF patients
was CD45RA�CCR7� , a phenotype consistent with TEM,
reported to be predominant in blood and within skin lesions
(Campbell et al., 2010; Clark et al., 2012). However,
significant high percentages of TEMRA CD4þ T cells were
also found in MF patients. The apparent discrepancies
between our results and results from prior studies may reside
on the cell surface molecules used to define naı̈ve and
memory T-cell subsets. Some reports are based on the respec-
tive expression of CD45RA and CD27, others on CCR7/
CD62L and CD27 (Fierro et al., 2008; Campbell et al.,
2010). In our hands, CD45RA was not an informative marker
by itself to distinguish HD, MF CD4þ T cells, and CD158kþ
T cells. CD27 expression was significantly lower on CD4þ
T cells from MF patients (Po0.001 when compared with
either HD or SS patients) and CCR7 alone was the most
discriminative marker. Although CCR7 expression overlaps
that of CD27 in HD, this was not the case in MF and SS
patients. This confirms previous data demonstrating that the
loss of CD27 expression does not necessarily follow the
expression of CCR7 during the stepwise differentiation of
memory CD4þ T cells (Fritsch et al., 2005). A singular
subset of CD27þ TEMRA lymphocytes was present in more
than 50% of MF and SS patients, whereas this subset
barely exists in HD. CD27 is a member of the TNF-R
family, which is transiently upregulated on normal T cells
on TCR engagement and irreversibly lost after repeated
antigenic stimulation (Sallusto et al., 2004; Fritsch et al.,
2005; Riou et al., 2007). The sequential loss of CCR7 and
CD27 is associated with a differential functional capacity of
these subsets: high production of IL-10 in TCM (CD45RA-
CCR7þCD27þ ), IFN-g in TTM, and IL-4 production corre-
lating with CD27 loss (Fritsch et al., 2005). As SS is associated
with significant immune abnormalities characterized by
dysregulation of both innate and adaptive immunity and a
Th2 profile (Olsen et al., 2011a), and giving that many
therapies may interfere with the host immune response, the
biological significance of atypical expansions of lymphocyte
subsets such as CD27þ TEMRA needs to be explored at
the functional level. Interestingly, the naı̈ve/memory profiles
of CD158k�CD3þCD4þ T cells paralleled those of
CD158kþ T cells. Thus, the ‘‘normal’’ compartment of
CD4þ T cells in SS patients may be altered by the general
immune disorder, which is correlated with tumor burden
(Wysocka et al., 2002), leading to the development of
opportunistic infections.

The first step in the process of T-cell skin homing is
mediated through the attraction of CCR4þ lymphocytes by
a chemokine gradient, followed by the extravasation to the
skin involving CLA interaction with its ligand, E-selectin
(Picker et al., 1990). As previously reported, CLA was not
universally expressed on MF CD4þ T cells and CD158kþ
T cells, but, surprisingly, we found an extreme hetero-
geneity of CCR4 expression on CD158kþ T cells (Ferenczi
et al., 2002; Fierro et al., 2006; Clark et al., 2012). The
increase of tumor burden during SS evolution was found
associated with less circulating CLAþCCR4þ and more
CLA�CCR4þ , specifically on the CD158kþ T-cell subset,
suggesting an enhanced CD158kþCLAþ T-cell migration
toward skin.

The physiopathogenesis of SS still remains unclear, several
studies have pointed out the possibility of a chronic
superantigen stimulation leading to the expansion of both
malignant and non-malignant cells. Still, the absence of a
homogeneous expansion of memory CD158kþ T cells at
initial diagnosis is challenging. It may reflect either intrinsic
phenotypic aberrancies of malignant cells, a transitional state
of differentiation during disease progression, or the impact of
the cytokinic environment. Of note, it was reported that most,
if not all, of the described immune abnormalities tend to
normalize on clearance of SCs and clinical remission (Yoo
et al., 2001).

In conclusion, our gating strategy, using multiple color flow
cytometry enables the optimization of CD158k as a positive
marker of SCs, for the diagnosis and the follow-up of SS in
routine practice. We found that CD158kþ T cells and
circulating CD4þ T cells from SS and MF patients exhibit
distinct patterns of cell surface expression. We are currently
monitoring CD158kþ T-cell subsets expressing naı̈ve and/or
memory phenotypes together with skin-homing addressins
to evaluate phenotypic and functional changes under
chemotherapeutic regimens and/or immune modulatory
therapies. Further, the specificity of this marker prompted us
to develop chimeric CD158k mAbs for a targeted immu-
notherapy, as we previously demonstrated that malignant
Sézary cells are sensitive to antibody-dependent cellular
cytotoxicity mediated by anti-KIR3DL2 mAbs (Bouaziz et al.,
2005).

MATERIALS AND METHODS
Patients and HDs

Fifty-five CTCL patients were consecutively included in this prospec-

tive study at the Hôpital Saint-Louis (Paris, France) between Novem-

ber 2010 and June 2012. The age ranged from 48 to 90 years (median

68 years). In 32 patients, a diagnosis of SS was established, according

to the WHO-EORTC classification of CTCL (Willemze et al., 2005)

and the criteria of the International Society for Cutaneous Lymphomas

(Olsen et al., 2011b), based on clinical features, the presence of an

identical T-cell clone evidenced in blood and/or skin, bsSC cell count

detected by cytomorphology, CD4/CD8 ratio, CD26 and/or CD7 loss,

and cutaneous histology. In addition, nine patients with inflammatory

diseases from other origins were investigated. Twenty-five patients

were investigated before diagnosis (12 SS and 13 MF or EMF), and a

longitudinal follow-up was performed for 12 patients. All patients
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were included after the informed and written consents were obtained

(CPP, Hôpital Saint-Louis, Paris, France). Forty-nine samples from HD

were collected from the blood donor center (Etablissement Français

du Sang, Hôpital Saint-Louis). The type of CTCL was disclosed to the

experimenter only after completion of analyses.

Blood samples

Samplings were performed before diagnosis and/or at sequential time

points during the follow-up. bsSC absolute cell counts (ml� 1) were

calculated as previously described (Bouaziz et al., 2010). PBMCs

were isolated by density-gradient centrifugation using lymphocyte

separation medium (Eurobio, Les Ulis, France) and stored in liquid

nitrogen. Genomic DNA and RNA were purified using TRI Reagent

(Molecular Research Center, Cincinnati, OH).

Flow cytometry

Absolute lymphocyte count was calculated from freshly collected

blood using the TruCount system (Becton Dickinson, le Pont de la

Claix, France) with CD3-APC, CD45-PerCP-Cy5.5, CD8FITC, and

CD4PE mAbs.

Eight-color labeling was performed on washed PBMCs with the

following mAbs: anti-CD3-V450, -CD4-V500, -CD8-PerCP, -CD16-

FITC, -CD26-FITC, -CD7-APC, -CD56P-ECy7, -CD14-APC-H7, -CLA-

FITC, -CCR4-PerCPCy5.5, -CCR7-PECy7, CD45RA-APC, -CD158k-PE

(BD Bioscience, Le Pont-de-Claix, France). The anti-CD158k (IgG2a)

termed AZ158 was kindly provided by Innate Pharma (Marseille,

France). Anti-TCR-Vb mAbs were used for subsequent analyses

(Beckman Coulter, Villepinte, France). Acquisition was performed

using a FACSCanto II flow cytometer. Results were expressed

according to the ) fluorescence minus one * control, allowing the

definition of the background signal (Perfetto et al., 2004) and data

were analyzed using FACS Diva (BD Biosciences)

T-cell repertoire and clonality
Determination of Vb usage was made from total RNA using

quantitative ‘‘Immunoscope’’ as previously described (Clave et al.,

2009). Absolute count of T-cell clones was calculated according to

the numbers of CD3þ T cells. Cell sorting was performed for five

representative patients (FACS ARIA III, Becton Dickinson). CD158kþ
percentages were above 98% within the positive fraction and below

4% within the negative fraction. Repertoire analysis was done on

purified CD158Kþ T cells and CD158k�CD4þ T cells. TCRVb
usage and size polymorphism were analyzed.

TCR gamma (TCRG) rearrangement was analyzed by PCR as

previously described (Senechal et al., 2007).

Statistical analysis

Non-parametric Mann–Whitney test was used to compare T-cell

populations between Sézary and MF patients or HDs. All statistical

analyses were performed with SPSS20 software (Barcelona, Spain).
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for cell sorting. This work was supported by INSERM and Assistance Publique
des Hôpitaux de Paris (Translational Research Grant in Biology 2010,
#RTB10002).

SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at http://
www.nature.com/jid

REFERENCES

Bagot M, Bensussan A (2006) Epidermotropic T cell lymphomas as models for
tumor progression. Med Sci (Paris) 22:192–6

Bagot M, Moretta A, Sivori S et al. (2001) CD4(þ ) cutaneous T-cell lymphoma
cells express the p140-killer cell immunoglobulin-like receptor. Blood
97:1388–91

Bahler DW, Hartung L, Hill S et al. (2008) CD158k/KIR3DL2 is a useful marker
for identifying neoplastic T-cells in Sezary syndrome by flow cytometry.
Cytometry B Clin Cytom 74:156–62

Bernengo MG, Novelli M, Quaglino P et al. (2001) The relevance of the
CD4þ CD26- subset in the identification of circulating Sezary cells. Br J
Dermatol 144:125–35

Bouaziz JD, Ortonne N, Giustiniani J et al. (2005) Circulating natural killer
lymphocytes are potential cytotoxic effectors against autologous malig-
nant cells in sezary syndrome patients. J Invest Dermatol 125:1273–8

Bouaziz JD, Remtoula N, Bensussan A et al. (2010) Absolute CD3þ
CD158kþ lymphocyte count is reliable and more sensitive than
cytomorphology to evaluate blood tumour burden in Sezary syndrome.
Br J Dermatol 162:123–8

Campbell JJ, Clark RA, Watanabe R et al. (2010) Sezary syndrome and mycosis
fungoides arise from distinct T-cell subsets: a biologic rationale for their
distinct clinical behaviors. Blood 116:767–71

Clark RA, Shackelton JB, Watanabe R et al. (2011) High-scatter T cells: a
reliable biomarker for malignant T cells in cutaneous T-cell lymphoma.
Blood 117:1966–76

Clark RA, Watanabe R, Teague JE et al. (2012) Skin effector memory T cells do
not recirculate and provide immune protection in alemtuzumab-treated
CTCL patients. Sci Transl Med 4:117ra7

Clave E, Busson M, Douay C et al. (2009) Acute graft-versus-host disease
transiently impairs thymic output in young patients after allogeneic
hematopoietic stem cell transplantation. Blood 113:6477–84

Delfau-Larue MH, Laroche L, Wechsler J et al. (2000) Diagnostic value of
dominant T-cell clones in peripheral blood in 363 patients presenting
consecutively with a clinical suspicion of cutaneous lymphoma. Blood
96:2987–92

Edelman J, Meyerson HJ (2000) Diminished CD3 expression is useful for
detecting and enumerating Sezary cells. Am J Clin Pathol 114:467–77

Ferenczi K, Fuhlbrigge RC, Pinkus J et al. (2002) Increased CCR4 expression in
cutaneous T cell lymphoma. J Invest Dermatol 119:1405–10

Fierro MT, Comessatti A, Quaglino P et al. (2006) Expression pattern of
chemokine receptors and chemokine release in inflammatory erythro-
derma and Sezary syndrome. Dermatology 213:284–92

Fierro MT, Novelli M, Quaglino P et al. (2008) Heterogeneity of circulating
CD4þ memory T-cell subsets in erythrodermic patients: CD27 analysis
can help to distinguish cutaneous T-cell lymphomas from inflammatory
erythroderma. Dermatology 216:213–21

Fritsch RD, Shen X, Sims GP et al. (2005) Stepwise differentiation of CD4
memory T cells defined by expression of CCR7 and CD27. J Immunol
175:6489–97

Harmon CB, Witzig TE, Katzmann JA et al. (1996) Detection of circulating
T cells with CD4þCD7- immunophenotype in patients with benign and
malignant lymphoproliferative dermatoses. J Am Acad Dermatol 35:
404–10

Klemke CD, Brade J, Weckesser S et al. (2008) The diagnosis of Sezary
syndrome on peripheral blood by flow cytometry requires the use of
multiple markers. Br J Dermatol 159:871–80

Moretta A, Biassoni R, Bottino C et al. (1997) Major histocompatibility
complex class I-specific receptors on human natural killer and
T lymphocytes. Immunol Rev 155:105–17

Morice WG, Katzmann JA, Pittelkow MR et al. (2006) A comparison of
morphologic features, flow cytometry, TCR-Vbeta analysis, and TCR-PCR

H Moins-Teisserenc et al.
Phenotypic Heterogeneity of CD158kþ Sézary Cells
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